84^2=w*(2w+2)

Simple and best practice solution for 84^2=w*(2w+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 84^2=w*(2w+2) equation:



84^2=w(2w+2)
We move all terms to the left:
84^2-(w(2w+2))=0
We add all the numbers together, and all the variables
-(w(2w+2))+7056=0
We calculate terms in parentheses: -(w(2w+2)), so:
w(2w+2)
We multiply parentheses
2w^2+2w
Back to the equation:
-(2w^2+2w)
We get rid of parentheses
-2w^2-2w+7056=0
a = -2; b = -2; c = +7056;
Δ = b2-4ac
Δ = -22-4·(-2)·7056
Δ = 56452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{56452}=\sqrt{4*14113}=\sqrt{4}*\sqrt{14113}=2\sqrt{14113}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{14113}}{2*-2}=\frac{2-2\sqrt{14113}}{-4} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{14113}}{2*-2}=\frac{2+2\sqrt{14113}}{-4} $

See similar equations:

| 6m/2-4=15 | | 2+8z^-1+z^-2=0 | | 9x-15=2x+1 | | 2+8z+z^-2=0 | | 28y=4=12 | | 7(p-9)=-34.3 | | 5x+4=7x+4-x | | 13u=45+4u | | 6x+11-10x-9=90 | | 4=-4(y-5) | | 4=-4(y-5$ | | 180-(16x+5)=(13x+1) | | 17=18x+5-6x | | 60+30a=400 | | 60a+30=400a+30 | | 60+30a=400+30a | | -5=6d-7d | | -9x=83 | | -2(7x-1)=-14x-2 | | 8a-10a=4 | | (0.3x+x)0.16=25 | | 4=-2/3+u | | 13/4=-1/2+w | | -2m+2=-12 | | 5(w+3)=-3(5w-4)+5w | | 2x+5+3x-12=38 | | -1(3x-5)-(2x-6)+1=-5(x-1)-(3x+2)+3 | | 5x+5(x-10=700 | | 6+12b+144=9b-18+9b | | 6g-20+16g=1-g | | 5+x-9-2x=7x+3-7x | | 4z+18z=176 |

Equations solver categories